Catégorie | Intelligence Artificielle

C’est quoi le Machine Learning ?

Le Machine Learning est une partie de l’Intelligence Artificielle (IA). Il offre aux systèmes la possibilité d’apprendre et de s’améliorer automatiquement à partir de leur expérience.

Le Machine Learning se concentre sur le développement de programmes informatiques pouvant accéder à des données. Il les utilisent ensuite pour s’améliorer.

Machine Learning

Le processus d’apprentissage commence par des observations ou des données, telles que des exemples, une expérience directe ou des instructions. Ceci afin de rechercher des modèles (ou pattern) dans les données et de prendre de meilleures décisions dans le futur. L’objectif principal est de permettre aux ordinateurs d’apprendre automatiquement sans intervention humaine ni assistance et d’ajuster les actions en conséquence.

Plusieurs catégories de Machine Learning

  • Les algorithmes d’apprentissage automatique supervisés peuvent appliquer ce que l’on a appris dans le passé à de nouvelles données. Ceci en utilisant des exemples pour prédire des événements futurs.
  • Les algorithmes d’apprentissage automatique non supervisés sont utilisés lorsque les informations utilisées pour s’entraîner ne sont ni classées ni étiquetées. Le système explore les données et peut tirer des déductions à partir de jeux de données.
  • Les algorithmes d’apprentissage automatique semi-supervisés se situent quelque part entre l’apprentissage supervisé et l’apprentissage non supervisé. Dans la mesure où ils utilisent à la fois des données étiquetées et non étiquetées. Les systèmes qui utilisent cette méthode sont capables d’améliorer considérablement la précision de l’apprentissage. Habituellement, l’apprentissage semi-supervisé est choisi lorsque les données étiquetées acquises nécessitent des ressources qualifiées et pertinentes pour pouvoir se former.
  • Les algorithmes d’apprentissage automatique par renforcement sont une méthode d’apprentissage qui interagit avec son environnement. Ceci en produisant des actions et en découvrant des erreurs ou des avantages. Cette méthode permet aux machines de déterminer automatiquement le comportement idéal dans un contexte spécifique afin d’optimiser ses performances.

L’apprentissage automatique permet d’analyser d’énormes quantités de données. Bien qu’elle fournisse généralement des résultats plus rapides et plus précis afin d’identifier des opportunités rentables ou des risques dangereux. Elle peut également nécessiter du temps et des ressources supplémentaires pour se former correctement. L’apprentissage automatique, l’IA et les technologies modernes rendent plus efficace le traitement de gros volumes d’informations.